Layer 2:深入理解Arbitrum

星想法2021-06-23 13:57:02

Arbitrum是Layer2 Rollup的一种方案。和Optimism类似,状态的终局性采用“挑战”(challenge)机制进行保证。Optimism的挑战方法是将某个交易完全在Layer1模拟执行,判断交易执行后的状态是否正确。这种方法需要在Layer1模拟EVM的执行环境,相对复杂。Arbitrum的挑战相对轻便一些,在Layer1执行某个操作(AVM),确定该操作执行是否正确。Arbitrum介绍文档中提到,整个挑战需要大概500字节的数据和9w左右的gas。为了这种轻便的挑战机制,Arbitrum实现了AVM虚拟机,并在AVM虚拟机中实现了EVM的执行。AVM虚拟机的优势在于底层结构方便状态证明。

Arbitrum的开发者文档详细介绍了Arbitrum架构和设计。

整体框架

Arbitrum的开发者文档给出了各个模块关系:

Layer 2:深入理解Arbitrum

Arbitrum的系统主要由三部分组成(图中的右部分,从下到上):EthBridge,AVM执行环境和ArbOS。EthBridge主要实现了inbox/outbox管理以及Rollup协议。EthBridge实现在Layer1。ArbOS在AVM虚拟机上执行EVM。简单的说,Arbitrum在Layer2实现了AVM虚拟机,在虚拟机上再模拟EVM执行环境。用AVM再模拟EVM的原因是AVM的状态更好表达,便于Layer1进行挑战。

EthBridge和AVM执行环境对应的源代码:

https://github.com/OffchainLabs/arbitrum.git

ArbOS对应的源代码:

https://github.com/OffchainLabs/arb-os.git

这个模块关系图太过笼统,再细分一下:

Layer 2:深入理解Arbitrum

EthBridge主要实现了三部分功能:inbox,outbox以及Rollup协议。inbox中“存放”交易信息,这些交易信息会“同步”到ArbOS并执行。outbox中“存放”从L2到L1的交易,主要是withdrawl交易。Rollup协议主要是L2的状态保存以及挑战。特别注意的是,Arbitrum的所有的交易都是先提交到L1,再到ArbOS执行。ArbOS除了对外的一些接口外,主要实现了EVM模拟器。整个模拟器实现在AVM之上。整个EVM模拟器采用mini语言实现,Arbitrum实现了AVM上的mini语言编译器。简单的说,Arbitrum定义了新的硬件(machine)和指令集,并实现了一种上层语言mini。通过mini语言,Arbitrum实现了EVM模拟器,可以执行相应交易。

AVM State

因为所有的交易都是在AVM执行,交易的执行状态可以用AVM状态表示。AVM相关实现的代码在arbitrum/packages/arb-avm-cpp中。

Layer 2:深入理解Arbitrum

AVM的状态由PC,Stack,Register等状态组成。AVM的状态是这些状态的hash值拼接后的hash结果。

AVM使用c++实现,AVM表示的逻辑实现在MachineStateKeys类的machineHash函数(machinestate.cpp)中。AVM的特别之处就是除了执行外,还能较方便的表达(证明)执行状态。深入理解AVM的基本数据结构,AVM的基本的数据类型包括:

usingvalue=std::variant<Tuple,uint256_t,CodePointStub,HashPreImage,Buffer>;enumValueTypes{NUM,CODEPT,HASH_PRE_IMAGE,TUPLE,BUFFER=12,CODE_POINT_STUB=13};

uint256_t - 整数类型

CodePoint - 当前代码指令表示

Tuple - 元组,由8个Value组成。元组中的某个元素依然可以是元组

Buffer - 数组,最长为2^64

HashPreImage - 固定的hash类型,hashValue = hash(value, prevHashValue)

每种数据类型除了数据表示外,还能非常方便地计算其hash值作为状态。详细看看CodePoint和Tuple基本数据类型。

CodePoint

CodePoint类型将多个操作“捆绑”在一起,每个CodePoint除了记录当前的Operation外,还包括前一个CodePoint的hash信息。这样所有的Operation可以串连起来,当前的CodePoint除了能表达当前的Operation外,还能明确Operation的依赖关系。CodePoint的类型定义在:packages/arb-avm-cpp/avm_values/include/avm_values/codepoint.hpp。

structCodePoint{Operationop;uint256_tnextHash;CodePoint(Operationop_,uint256_tnextHash_):op(op_),nextHash(nextHash_){}boolisError()const{returnnextHash==0&&op==Operation{static_cast<OpCode>(0)};}};Tuple

Tuple类型由RawTuple实现。RawTuple是由一组value组成。Tuple限制最多8个value。

structRawTuple{HashPreImagecachedPreImage;std::vector<value>data;booldeferredHashing=true;RawTuple():cachedPreImage({},0),deferredHashing(true){}};

Tuple的类型定义在:packages/arb-avm-cpp/avm_values/include/avm_values/tuple.hpp。

在理解了基础类型的基础上,DataStack可以由一系列Tuple实现:

Layer 2:深入理解Arbitrum

总结一下,AVM中的PC,Stack,Register等等的状态都能通过hash结果表示。AVM整个状态由这些hash值的拼接数据的hash表示。

Rollup Challenge

在提交到L1的状态有分歧时,挑战双方(Asserter和Challenger)先将状态分割,找出“分歧点”。明确分歧点后,挑战双方都可提供执行环境,L1执行相关操作确定之前提交的状态是否正确。L1的挑战处理逻辑实现在arb-bridge-eth/contracts/challenge/Challenge.sol。整个挑战机制有超时机制保证,为了突出核心流程,简化流程如下图所示:

Layer 2:深入理解Arbitrum

挑战者通过initializeChallenge函数发起挑战。接下来挑战者(Challenger)和应战者(Asserter)通过bisectExecution确定不可再分割的“分歧点”。在确定分歧点后,挑战者通过oneStepProveExecution函数确定Assert之前提交的状态是否正确。

initializeChallenge

functioninitializeChallenge(IOneStepProof[]calldata_executors,address_resultReceiver,bytes32_executionHash,uint256_maxMessageCount,address_asserter,address_challenger,uint256_asserterTimeLeft,uint256_challengerTimeLeft,IBridge_bridge)externaloverride{...asserter=_asserter;challenger=_challenger;...turn=Turn.Challenger;challengeState=_executionHash;...}

initializeChallenge确定挑战者和应战者,并确定需要挑战的状态(存储在challengeState)。challengeState是由一个和多个bisectionChunk状态hash组成的merkle树树根:

整个执行过程可以分割成多个小过程,每个小过程(bisection)由起始和结束的gas和状态来表示。

turn用来记录交互顺序。turn = Turn.Challenger表明在初始化挑战后,首先由Challenger发起分歧点分割。

Layer 2:深入理解Arbitrum

bisectExecution

bisectExecution挑选之前分割片段,并如可能将片段进行再次分割:

bisectExecution的函数定义如下:

functionbisectExecution(bytes32[]calldata_merkleNodes,uint256_merkleRoute,uint256_challengedSegmentStart,uint256_challengedSegmentLength,bytes32_oldEndHash,uint256_gasUsedBefore,bytes32_assertionRest,bytes32[]calldata_chainHashes)externalonlyOnTurn{

_chainHashes是再次分割点的状态。如果需要再次分割,需要满足分割点的个数规定:

uint256privateconstantEXECUTION_BISECTION_DEGREE=400;require(_chainHashes.length==bisectionDegree(_challengedSegmentLength,EXECUTION_BISECTION_DEGREE)+1,"CUT_COUNT");

简单的说,每次分割,必须分割成400份。

_oldEndHash是用来验证状态这次分割的分割片段是上一次分割中的某个。需要检查分割的有效性:

require(_chainHashes[_chainHashes.length-1]!=_oldEndHash,"SAME_END");require(_chainHashes[0]==ChallengeLib.assertionHash(_gasUsedBefore,_assertionRest),"segmentpre-fields");require(_chainHashes[0]!=UNREACHABLE_ASSERTION,"UNREACHABLE_START");require(_gasUsedBefore<_challengedSegmentStart.add(_challengedSegmentLength),"invalidsegmentlength");

起始状态正确。这次分割不能超出上次分割范围,并且最后一个状态和上一个分割的结束状态不一样。

bytes32bisectionHash=ChallengeLib.bisectionChunkHash(_challengedSegmentStart,_challengedSegmentLength,_chainHashes[0],_oldEndHash);verifySegmentProof(bisectionHash,_merkleNodes,_merkleRoute);

通过merkle树的路径检查确定起始状态和结束状态是上一次某个分割。

updateBisectionRoot(_chainHashes,_challengedSegmentStart,_challengedSegmentLength);

更新细分分割对应的challengeState。

Layer 2:深入理解Arbitrum

oneStepProveExecution

当不能分割后,挑战者提供初始状态(证明),并由L1进行相应的计算。计算的结果应该和提供的_oldEndHash不一致。不一致说明挑战者成功证明了之前的计算结果不对。

(uint64gasUsed,uint256totalMessagesRead,bytes32[4]memoryproofFields)=executors[prover].executeStep(bridge,_initialMessagesRead,[_initialSendAcc,_initialLogAcc],_executionProof,_bufferProof);

通过executeStep计算出正确的结束状态。executeStep实现在packages/arb-bridge-eth/contracts/arch/OneStepProofCommon.sol中。核心是executeOp函数,针对当前的context读取op,执行并更新状态。感兴趣的小伙伴可以自行查看。

rootHash=ChallengeLib.bisectionChunkHash(_challengedSegmentStart,_challengedSegmentLength,oneStepProofExecutionBefore(_initialMessagesRead,_initialSendAcc,_initialLogAcc,_initialState,proofFields),_oldEndHash);}verifySegmentProof(rootHash,_merkleNodes,_merkleRoute);

确定初始状态和结束状态是上一次挑战状态中的某个分割。初始状态由提供的证明(proof)计算获得。

require(_oldEndHash!=oneStepProofExecutionAfter(_initialSendAcc,_initialLogAcc,_initialState,gasUsed,totalMessagesRead,proofFields),"WRONG_END");

确认_oldEndHash和计算获得结束状态不一样。不一样才说明之前提交的结束状态是错误的。

_currentWin();

计算完成后,确定胜利方。

总结:

Arbitrum是Layer2 Rollup的一种方案。采用挑战机制确定Rollup状态的终局性。为了引入轻便挑战机制,Arbitrum定义了AVM,一种可以方便证明执行状态的虚拟机,并设计了mini语言和编译器。在AVM上模拟了EVM的执行环境,兼容EVM。挑战时将执行过程进行400分分割,由L1执行少量指令确定状态是否正确。

声明:该文观点仅代表作者本人,币妈妈信息发布平台,币妈妈仅提供信息存储空间服务。

星想法

文章:9 粉丝:313

+ 关注